Tips for solution writeups

• Use enough words and sentences. *Every math expression should be part of a sentence with words in it.*

 – If an equation is on its own, I don’t know whether you’re saying it’s something that you know to be true, something you are claiming to be true, something you want to prove, or something you want to disprove.

• Be sure that the *idea* behind the proof is clear. If the proof only works because the number you are multiplying by is positive, you should point out that it is positive.

• You should be able to justify every step with a concrete explanation. Explanations like, “because that’s how multiplication works” are not specific enough. Instead, say something like, “because multiplication by a nonnegative number preserves the direction of inequalities.” This can also help you catch errors (like when you forget about the nonnegative condition).

 – Also, your justification should not just be a restatement of the thing you are trying to justify if it isn’t something that we already know to be true. You cannot justify a statement like $x^2 \geq x$ by saying “squaring a number makes it bigger.”

• Use precise language. Saying something like “products grow faster than sums” is not very precise. Instead, you should write down the specific inequality you need using actual variables or numbers.

• Quantifiers:

 – If you are trying to *prove* a statement of the form “For all $x \ldots$,” or if you are trying to *disprove* a statement of the form “There exists x such that \ldots,” then *examples do not constitute a proof.* You must provide a general argument, so *you need not include any specific examples.* Of course, working out examples can still be helpful when thinking about a problem, just not for the writeup.

 – If you are trying to *disprove* a statement of the form “For all $x \ldots$,” or if you are trying to *prove* a statement of the form “There exists x such that \ldots,” then *a single example is sufficient.* You do not need to include how you came up with this example, but you should make sure to do the calculation to show that this example works.

• Please make sure your writeups are legible and organized.

• Recognize when you need to prove an *implication* versus an *equivalence.* Remember that an implication is weaker than an equivalence.

 – We say that P *implies* Q if Q is true whenever P is true; it does not matter whether Q is true or false if P is false.

 – We say that P *and* Q *are equivalent* if Q is true whenever P is true and *vice versa.* Therefore Q is also false when P is false.
• Unless a problem is specifically about logical expressions, operators, etc., you should not use logical notation such as ∧ or ∨ in your proofs.

 – Note also that the symbol ∨ is not interchangeable with the word or in any English sentence. It is only appropriate to use ∨ to connect two logical statements.

 For instance, you might say in English that the minimum of two real numbers \(x \) and \(y \) is \(x \) or \(y \). However, it does not make sense to write \(\min(x, y) = x \lor y \) since \(x \) and \(y \) are real numbers and therefore cannot be combined using \(\lor \). (One could phrase this as the statement \((\min(x, y) = x) \lor (\min(x, y) = y) \), but it is usually easier just to use an English sentence.)

• Be sure you are using symbols appropriately: arithmetic operations such as + and − can only be used with numbers; set operations such as ∩, ∪, and \(\setminus \) can only be used with sets; logical operations such as ∧, ∨, and \(\setminus \) can only be used with sets, and so forth.

 – Every mathematical object (noun) is of a certain type, such as a number, a set, or a statement. Every mathematical operator (verb) can turn certain types of objects into new objects.

 For instance, the symbol \(\in \) can take a number \(x \) and a set \(S \) to produce the statement \(x \in S \). You cannot write something like \(x \in P \) if \(P \) is a statement. Similarly if \(A \) and \(B \) are sets, you can’t write things like \(\neg A \) or \(A \land B \).