Let A be a set, and let $R \subseteq A \times A$ be a relation on A. Here are the definitions of some properties that R sometimes satisfies:

- **reflexivity**: for all $x \in A$, $(x, x) \in R$.
- **symmetry**: for all $x, y \in A$, if $(x, y) \in R$, then $(y, x) \in R$.
- **anti-symmetry**: for all $x, y \in A$, if $(x, y) \in R$ and $(y, x) \in R$, then $x = y$.
- **transitivity**: for all $x, y, z \in A$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$.

We say that R is an *equivalence relation* if it satisfies reflexivity, symmetry, and transitivity. We say that R is a *partial order* if it satisfies reflexivity, anti-symmetry, and transitivity.

Suppose $A = \{1, 2, 3, \ldots, 100\}$. Which of the following relations are equivalence relations? Partial orders?

1. $\{(x, y) \in A \times A \mid x \leq y\}$.
2. $\{(x, y) \in A \times A \mid x < y\}$.
3. $\{(x, y) \in A \times A \mid y - x \text{ is even}\}$.
4. $\{(x, y) \in A \times A \mid y - x \text{ is odd}\}$.
5. $\{(x, y) \in A \times A \mid y \text{ is a multiple of } x\}$.
6. $\{(x, y) \in A \times A \mid y \text{ is a multiple of } x \text{ or } x \text{ is a multiple of } y\}$.
7. $\{(x, y) \in A \times A \mid \frac{y}{x} = 2^k \text{ for some integer } k\}$.

Which relations are both an equivalence relation and a partial order? Formulate a theorem and prove it.
1. This is a partial order. Indeed, for all x, y, and z,

 - $x \leq x$ for all x;
 - if $x \leq y$ and $y \leq x$, then $x = y$;
 - if $x \leq y$ and $y \leq z$, then $x \leq z$.

 It is not symmetric since $1 \leq 2$ but $2 \not\leq 1$.

2. This is neither (it is not reflexive).

3. This is an equivalence relation:

 - $x - x = 0$ is even for all x;
 - if $y - x$ is even, then $x - y = -(y - x)$ is even;
 - if $y - x$ is even and $z - y$ is even, then so is $z - x = (z - y) + (y - x)$.

 It is not anti-symmetric: $3 - 1$ and $1 - 3$ are even but $1 \neq 3$.

4. This is neither (it is not reflexive).

5. This is a partial order:

 - x is a multiple of x for all x;
 - if y is a multiple of x and x is a multiple of y, then $x = y$;
 - if y is a multiple of x and z is a multiple of y, then z is a multiple of x.

 It is not symmetric since 2 is a multiple of 1 but not vice versa.

6. This is neither: it is not transitive since 2 and 3 are both multiples of 1, but neither 2 nor 3 is a multiple of the other.

7. This is an equivalence relation:

 - $\frac{y}{x} = 2^0$ for all x;
 - if $\frac{y}{x} = 2^k$, then $\frac{z}{y} = 2^{-k}$;
 - if $\frac{y}{x} = 2^k$ and $\frac{z}{y} = 2^\ell$, then $\frac{z}{x} = \frac{z}{y} \cdot \frac{y}{x} = 2^\ell \cdot 2^k = 2^{k+\ell}$.

 It is not antisymmetric since $\frac{2}{1} = 2^1$ and $\frac{1}{2} = 2^{-1}$, but $1 \neq 2$.

 In fact, the only relations that are both equivalence relations and partial orders are the identity relations $i_A = \{ (x, x) \mid x \in A \}$. It is easy to check that i_A satisfies all four given properties.

 Conversely, suppose R is both an equivalence and partial order, and take an arbitrary $(x, y) \in R$. By symmetry, we must have that $(y, x) \in R$, but then by antisymmetry, we must have $x = y$. Thus R can only contain ordered pairs of the form (x, x) for $x \in A$. By reflexivity, it must contain all such ordered pairs. Thus we must have $R = i_A$.

2