1. Associate each letter of the alphabet with an element of \mathbb{Z}_{26} in the following way:

 \[A = 1, \quad B = 2, \quad C = 3, \quad \ldots, \quad Y = 25, \quad Z = 26 \ (= 0). \]

 For each of the following ciphertexts, find the encryption function f, the decryption function f^{-1}, and the plaintext given that:

 (a) f is a Caesar shift.

 \[
 \text{WVBPMWBPMPZPIVLGWCIDMLQNNMzMVBNNQVOMZA}
 \]

 (b) f is an affine shift, and the two most common letters in the plaintext are I and T.

 \[
 \text{ZRPDPZCFQYZLHVQZCDABQZWNCQVCNXOQXNQFONXZQ}
 \]

 (c) f is a 2×2 Hill cipher, and the plaintext ends TQQQ (the Q’s serve as padding).

 \[
 \text{HUHOYZIWNCTRKEU}
 \]

2. Find the greatest common divisor g of $a = 10117$ and $b = 5293$, and find integers u and v such that $g = au + bv$.

3. Let a and b be positive integers. Show that an integer c can be written in the form $c = ax + by$ for some integers x and y if and only if c is a multiple of $g = \gcd(a, b)$.