MA 524 Homework 10 – due 11/15

Homework:

1. Let L be a distributive lattice, and fix any element $a \in L$. Let $\varphi: L \to L \times L$ be the map given by $\varphi(x) = (x \land a, x \lor a)$. Show that φ is a lattice embedding, that is, φ is an isomorphism onto its image and preserves meets and joins.

2. Let L be a finite distributive lattice. Let P be the subposet of join-irreducibles in L, and let Q be the subposet of meet-irreducibles in L. Show that $P \cong Q$, and give an explicit isomorphism between them.

3. Let P be a finite poset and n any positive integer. Show that the number of order-preserving maps $\sigma: P \to n$ is a polynomial in n. What is its leading term?

4. Let P be a finite poset. For any $t \in P$, let $\lambda_t = \# \{ s \mid s \leq t \}$. Show that

$$e(P) \geq \frac{|P|!}{\prod_{t \in P} \lambda_t}$$

and that equality holds if and only if P does not contain the poset shown below as an induced subposet.

\[\begin{array}{c}
\bullet \\
\bullet
\end{array} \]