1. We prove the first claim; the second follows by duality. Note that \(a \wedge b \leq a \), and \(a \wedge b \leq b \leq b \vee c \). Hence \(a \wedge b \leq a \wedge (b \vee c) \). The same argument with \(b \) and \(c \) switched gives \(a \wedge c \leq a \wedge (c \vee b) = a \wedge (b \vee c) \). Hence \(a \wedge (b \vee c) \geq (a \wedge b) \vee (a \wedge c) \).

2. Consider the set \(S = \{ x \in L \mid x \leq f(x) \} \). Note that \(S \) is nonempty since \(\hat{0} \in S \). Let \(p = \bigvee_{x \in S} x \). We claim that \(p \) is the greatest fixed point of \(f \). Since all fixed points lie in \(S \), it suffices to show that \(p \) is itself a fixed point.

To see this, note that since \(f \) is order-preserving and \(p \geq x \) for all \(x \in S \), we have \(f(p) \geq f(x) \geq x \) for all \(x \in S \). Thus \(f(p) \geq \bigvee_{x \in S} x = p \). Now, since \(f \) is order-preserving and \(p \leq f(p) \), we have \(f(p) \leq f(f(p)) \). But this implies \(f(p) \in S \), so \(f(p) \leq \bigvee_{x \in S} x = p \). It follows that \(p = f(p) \), so \(p \) is a fixed point.

Here is an alternate proof when \(L \) is finite. We first show that any order-preserving map \(f \) from a finite lattice to itself has a fixed point. For any element \(x \in L \), we have that \(x \leq f(x) \leq f(f(x)) \leq f(f(f(x))) \leq \cdots \) since \(f \) is order-preserving. Since \(L \) is finite, this sequence must stabilize at some point, which implies that some \(y = f(f(\cdots f(x)\cdots)) \) is a fixed point of \(f \). Now let \(S \) be the set of fixed points of \(f \), which is nonempty, and let \(p \) be the join of all these fixed points. As in the previous argument, \(f(p) \geq f(x) = x \) for all \(x \in S \), so \(f(p) \geq \bigvee_{x \in S} x = p \). But now the interval \(I = [p, \hat{1}] \) is also a lattice, and the restriction \(f|_I \) sends any \(z \in I \) to an element \(f(z) \geq f(p) \geq p \), so \(f(z) \in I \). In other words, \(f|_I \) is an order-preserving map on the interval \(I \), so it must have a fixed point. But any fixed point of \(f|_I \) is also a fixed point of \(f \), all of which are at most \(p \). It follows that \(p \) must be a fixed point, as desired.

3. For the reverse direction, the condition implies that \(u \) covers \(u \wedge v \) if and only if \(u \vee v \) covers \(v \), and similarly if we switch \(u \) and \(v \). This immediately implies that \(u \) and \(v \) cover \(u \wedge v \) if and only if \(u \vee v \) covers \(u \) and \(v \), which is equivalent to modularity.

For the forward direction, we will show that the map \(\varphi \) from \(I = [u \wedge v, u] \) to \(J = [v, u \vee v] \) given by \(\varphi(x) = x \vee v \) is an isomorphism with inverse \(\psi: J \to I \) given by \(\psi(y) = y \wedge u \).

- To check that \(\varphi \) is well-defined, we need that for all \(x \in I \), \(\varphi(x) = x \vee v \geq v \). Since \(x \leq u \), \(u \vee v = (u \vee x) \vee v = u \vee (x \vee v) \geq x \vee v \). A similar argument shows that for \(y \in J \), \(\psi(y) \in I \).

- To see that \(\psi \circ \varphi \) is the identity on \(I \), for any \(x \in I \), let \(z = \psi(\varphi(x)) = (x \vee v) \wedge u \). Since \(x \leq u \) and \(x \leq x \vee v \), we have \(x \leq (x \vee v) \wedge u = z \). But by modularity, \(L \) is graded with rank function \(\rho \), and

\[
\begin{align*}
\rho(z) &= \rho((x \vee v) \wedge u) \\
&= \rho(u) + \rho(x \vee v) - \rho((x \vee v) \vee u) \\
&= \rho(u) + \rho(x \vee v) - \rho(u \vee v) \\
&= \rho(u) + (\rho(x) + \rho(v) - \rho(x \wedge v)) - (\rho(u) + \rho(v) - \rho(u \wedge v)) \\
&= \rho(x) - \rho(x \wedge v) + \rho(u \wedge v) \\
&= \rho(x),
\end{align*}
\]

\(\square \)
4. (a) Let αv, $\sigma(c)$ Let \bullet

so we must have $z = x$. (Here we use that $(x \lor v) \lor u = (x \lor u) \lor v = u \lor v$, and $x \land v = (x \land u) \land v = x \land (u \land v) = u \land v$.)

A similar argument shows that $\varphi \circ \psi$ is the identity on J.

- To see that φ is order-preserving, note that if $x \leq y$, then $y \lor v = (x \lor y) \lor v = y \lor (x \lor v) \geq x \lor v$. A similar argument shows that ψ is also order-preserving.

(b) Let α_{ij}, for $1 \leq i < j \leq n$, be the atom in Π_n in which i and j lie in the same block and all other elements lie in blocks of size 1. Then Π_n is atomic: any $\pi \in \Pi_n$ is the join, or common coarsening, of all α_{ij} for which i and j lie in the same block of π.

To see that Π_n is semimodular, consider any set partition $\sigma = \{\sigma_1, \sigma_2, \ldots, \sigma_k\} \in \Pi_n$. Then any τ that covers σ is obtained by replacing some σ_i and σ_j with $\sigma_i \cup \sigma_j$. Now suppose τ_1 and τ_2 both cover $\sigma = \tau_1 \land \tau_2$. Assume without loss of generality that $\tau_1 = \{\sigma_1 \cup \sigma_2, \sigma_3, \ldots, \sigma_k\}$.

- If τ_2 does not merge either σ_1 or σ_2, say $\tau_2 = \{\sigma_1, \sigma_2, \sigma_3 \cup \sigma_4, \ldots, \sigma_k\}$, then $\tau_1 \lor \tau_2 = \{\sigma_1 \cup \sigma_2, \sigma_3 \cup \sigma_4, \ldots, \sigma_k\}$, which covers both τ_1 and τ_2.

- If τ_2 does merge one of σ_1 or σ_2, say $\tau_2 = \{\sigma_1 \cup \sigma_3, \sigma_2, \sigma_4, \ldots, \sigma_k\}$, then $\tau_1 \lor \tau_2 = \{\sigma_1 \cup \sigma_2 \cup \sigma_3, \sigma_4, \ldots, \sigma_k\}$, which again covers both τ_1 and τ_2.

Hence Π_n is semimodular.

(b) Let $v_{ij} = e_i - e_j \in \mathbb{R}^n$, and let $S = \{e_i - e_j \mid 1 \leq i, j \leq n\}$. We claim that $L(S) \cong \Pi_n$.

For any subspace $W \subseteq V$, let $\sigma(W)$ be the set partition of $[n]$ for which i and j lie in the same block if and only if $e_i \equiv e_j$ in V/W, or equivalently, if and only if $v_{ij} \in W$. (Such a set partition exists because equality in V/W is an equivalence relation.) This gives a bijection from subspaces W spanned by subsets of S to elements of Π_n: given a set partition $\sigma \in \Pi_n$, we can reconstruct W by letting W be the span of $e_i - e_j$, where i and j lie in the same block of σ. (This subspace W is given by the linear equations $\sum_{i \in \sigma_k} x_i = 0$ for all blocks $\sigma_k \in \sigma$, from which it is clear that $e_i - e_j$ will lie in W if and only if i and j lie in the same block σ_k.)

To see this is an isomorphism, note that $W_1 \cap S \subseteq W_2 \cap S$ if and only if $e_i - e_j \in W_1$ implies $e_i - e_j \in W_2$. This holds if and only if any two elements in the same block of $\sigma(W_1)$ also lie in the same block of $\sigma(W_2)$, or equivalently, $\sigma(W_1) \leq \sigma(W_2)$.

(c) Let $\sigma = 12|3456 \cdots n$, and let $\tau = 13|2456 \cdots n$. Then $\sigma \lor \tau$ is the common coarsening of σ and τ, which is $\hat{1} = 123456 \cdots n$, which covers both σ and τ. However, $\sigma \land \tau = 1|23|456 \cdots n$, which is not covered by σ or τ. Hence Π_n is not modular.