1. The *Minkowski sum* of two sets $S, T \subseteq \mathbb{R}^d$ is defined by

$$S + T = \{x + y \mid x \in S, y \in T\}.$$

Show that the Minkowski sum of two V-polytopes is again a V-polytope.

2. Let S be a set of $d + 2$ points in \mathbb{R}^d. Show that S can be partitioned into two disjoint (nonempty) sets A and B such that $\text{conv}(A) \cap \text{conv}(B) \neq \emptyset$.

3. Consider the d-dimensional hypercube $C_d = \{(x_1, \ldots, x_d) \mid -1 \leq x_i \leq 1\}$.

 (a) Given $a \in (\mathbb{R}^d)^*$, for which point(s) $x \in C_d$ is ax maximized?

 (b) Show that C_d has 3^d nonempty faces. How many faces of dimension k does it have for each $0 \leq k \leq d$?

4. An $n \times n$ matrix with nonnegative real entries is called *doubly stochastic* if the sum of each row and column is 1. The set of all $n \times n$ doubly stochastic matrices in \mathbb{R}^{n^2} is the *Birkhoff polytope* $P(n)$. Show that $P(n)$ is the convex hull of the $n!$ permutation matrices.