1. (a) Let \(m = \min cz \). Since the inequality \(bx \leq M \) is valid on \(P(A, z) \), by Farkas’ Lemma, there exists \(c \in (R^m)^* \) such that \(c \geq 0 \), \(cA = b \) and \(cz \leq M \). Thus \(m \leq M \). On the other hand, if \(cz = m \), then for any \(x \in P(A, z) \), \(bx = cAx \leq cz = m \), so \(M \leq m \). Hence \(M = m \), as desired.

(b) If \(M = \infty \), then we claim that there is no \(c \geq 0 \) such that \(cA = b \). Indeed, if there were, then the argument above would show that, for all \(x \in P(A, z) \), \(bx \leq cz < \infty \). But \(bx \) is unbounded, so this is impossible.

2. Let

\[
P - Q = P + (-Q) = \{ p - q \mid p \in P, q \in Q \} = \text{conv}\{ v_i - w_j \mid v_i \in V, w_j \in W \},
\]

where \(P = \text{conv}(V) \) and \(Q = \text{conv}(W) \). (See HW 1, #1.) Since \(P \) and \(Q \) are disjoint, \(0 \notin P \cap Q \). Hence by Farkas’ Lemma, there exists a linear functional \(a \in (R^d)^* \) such that \(ax \geq a_0 \) for all \(x \in P - Q \) and \(0 = a0 < a_0 \). Thus \(a(p - q) = ap - aq \geq a_0 > 0 \) for all \(p \in P, q \in Q \). Hence there exists a real number \(b \) between \(\inf_{p \in P} ap \) and \(\sup_{q \in Q} aq \), and then the hyperplane \(ax = b \) separates \(P \) and \(Q \).

3. Suppose the face \(F \) of the cone \(C \) is defined by the valid inequality \(ax \leq a_0 \). Since \(0 \in C \), we must have \(a_0 \geq 0 \). Suppose \(a_0 > 0 \). Choose any \(y \in F \). Then \(ay = a_0 \), but \(ty \in C \) for all \(t \geq 0 \), so \(ta_0 = a(ty) \leq a_0 \) for all \(t \geq 0 \). This is only possible if \(a_0 = 0 \), so \(0 \in F \). Now if \(y \) lies in the lineality space of \(C \), so does \(-y \), so \(ay \leq 0 \) and \(-ay \leq 0 \) implies \(ay = 0 \), so \(y \) lies in \(F \) as well.

4. Consider any collection of half-spaces given by the rows of the matrix equation \(Ax > z \). These half-spaces cover all of \(R^d \) if and only if there is no solution to \(Ax \leq z \). By Farkas’ Lemma (I), this occurs if and only if there exists \(c \in (R^d)^* \) such that \(c \geq 0 \), \(cA = 0 \), and \(cz = -1 \), or equivalently, the vector \((0, -1) \) lies in the cone generated by \((a_i, z_i) \) (where \(a_i \) are the rows of \(A \), and \(z_i \) are the entries of \(z \)).

Now take \(S \) such that \(\bigcup_{H \in S} H = R^d \). Then \((0, -1) \) lies in the cone generated by the \((a_i, z_i) \), so by Carathéodory’s Theorem (for cones), it follows that \((0, -1) \) lies in the cone generated by at most \(d + 1 \) of them. The corresponding half-spaces of \(S \) then cover \(R^d \).