MA 724 Homework 5 – Solutions

1. (a) If Q is a pyramid with vertex v, then P is the vertex figure Q/v. Hence the faces of P are in bijection with the faces of Q containing v simply by adding the vertex v. The only other faces of Q are those contained in P itself, so it follows that $L(Q) \cong L(P) \times 2$.

(b) Let v_1 and v_2 be the two vertices of the bipyramid. Then, as above, the faces of P are in bijection with the faces of Q containing v_i. However, the face Q contains both v_1 and v_2, and P is no longer a face of Q. In summary, each face of Q is either Q itself or has the form F, $\text{conv}(F,v_1)$, or $\text{conv}(F,v_2)$ for some proper face F of P.

In other words, let $L(P) = L'(P) \oplus 1$, so $L'(P)$ is the poset of proper faces of P. Then $L(Q) \cong (L'(P) \times V) \oplus 1$, where $V = 1 \oplus (1 + 1)$.

(c) Suppose $Q = P \times [0,1] \subseteq \mathbb{R}^{d+1}$. Let $a \in (\mathbb{R}^d)^*$ be maximized on the nonempty face F of P. If $a' = [a/c] \in (\mathbb{R}^{d+1})^*$, then it is maximized on Q at $F \times \{1\}$ if $c > 0$; on $F \times \{0\}$ if $c < 0$; and on $F \times [0,1]$ if $c = 0$. Adding in the empty face, we find that if $L(P) = 1 \oplus \Lambda(P)$, so $L'(P)$ is the poset of nonempty faces of P, then $L(Q) \cong 1 \oplus (\Lambda(P) \times \Lambda)$, where $\Lambda = (1 + 1) \oplus 1$.

(Alternatively, one can check that replacing P with its prism is equivalent to replacing P^Δ with its bipyramid.)

2. (a) Clearly if $cx \leq 0$ for all $x \in C$, then $cx \leq 1$ for all $x \in C$. Conversely, suppose $cx \leq 1$ for all $x \in C$. Since C is closed under taking positive scalar multiples, we must have $c(tx) = tcx \leq 1$ for all $t > 0$. Hence $cx \leq \frac{1}{t}$ for all $t > 0$, so $cx \leq 0$.

(b) We claim that C^Δ has H-representation given by $P(Y^T,0) = \{c \mid cY \leq 0\}$ and V-representation given by $\text{cone}(A^T) = \text{cone}\{a_i \mid a_i \in A\}$.

For the first claim, clearly if $c \in C^\Delta$, then $cy_i \leq 0$ for all $y_i \in Y$. Conversely, if $cy_i \leq 0$ for all $y_i \in Y$, then $c(\sum \lambda_i y_i) = \sum \lambda_i (cy_i) \leq 0$ for all $\lambda_i \geq 0$, so $c \in C^\Delta$.

For the second claim, if $c = \sum \lambda_i a_i \in \text{cone}(A^T)$, then $cx = \sum \lambda_i a_i x \leq 0$ for all $x \in C$. Conversely, suppose $cx \leq 0$ for all $x \in C = P(A,0)$. Then by Farkas’ Lemma, $cx \leq 0$ can be written as a linear combination of the inequalities $a_i x \leq 0$ defining C; hence $c \in \text{cone}(A^T)$.

Now C is pointed \iff its lineality space $\ker(A)$ is trivial $\iff A$ has rank d $\iff A^T$ has rank d \iff the row span of A^T is \mathbb{R}^d $\iff C^\Delta = \text{cone}(A^T)$ has dimension d.

Similarly, $C = \text{cone}(Y)$ has dimension d $\iff Y$ and Y^T have rank d $\iff C^\Delta = P(Y^T,0)$ is pointed.

(c) If C is the homogenization of a polytope P, then $C = \text{cone}\{(1,x) \mid x \in P\}$. Then $(-1,c) \in C^\Delta$ if and only if $-1 + cx \leq 0$, that is, $cx \leq 1$. Hence C^Δ intersected with the plane $x_0 = -1$ is P^Δ (so C^Δ is a reflection of the homogenization of P^Δ).
3. (a) Suppose P is reflexive and $v ∈ \text{int}(P)$ is a nonzero lattice point. Then some point tv for $t > 1$ lies on a facet whose affine span is $av = 1$, where a is a vertex of P^Δ and hence a lattice point in $(\mathbb{R}^d)^*$. But then $av = \frac{1}{t}$ is not an integer, which is a contradiction.

(b) Let $P \subseteq \mathbb{R}^3$ be given by the inequalities $x_i ≤ 1$, $-x_i ≤ 1$, and $x_1 + x_2 + x_3 ≤ 2$. (In other words, P is the convex hull of all lattice points with coordinates 0, 1, or -1 except for $(1, 1, 1)$.) Then P contains no lattice points in its interior other than the origin (since the only way for an integer to satisfy $x_i < 1$ and $-x_i < 1$ is if $x_i = 0$). But P^Δ has the vertex $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, so P is not reflexive.