1. Let P and Q be polytopes in \mathbb{R}^d. Show that each face of the Minkowski sum $P + Q$ has the form $F + G$, where F is a face of P and G is a face of Q.

Deduce that the normal fan $N(P + Q)$ is the common refinement of $N(P)$ and $N(Q)$.

2. Show that the following diagram is not Schlegel.

3. Let $S = \{v_1, \ldots, v_n\}$ be the vertices of a convex set whose affine span is \mathbb{R}^d. For any function $f: S \to \mathbb{R}$, let Δ_f be the regular subdivision of $\text{conv}(S)$ obtained from the lower hull of f.

For any regular subdivision Δ of $\text{conv}(S)$ whose vertices lie in S, define $C(S, \Delta)$ to be the set of functions $f \in \mathbb{R}^S$ such that Δ_f is a coarsening of Δ—i.e., each face of Δ is contained in a face of Δ_f.

(a) Show that $C(S, \Delta)$ is a polyhedral cone in \mathbb{R}^S. Is it pointed?

(b) Show that if Δ' is a coarsening of Δ, then $C(S, \Delta')$ is a face of $C(S, \Delta)$.

(c) Show that the set of $C(S, \Delta)$ forms a complete fan Σ_S in \mathbb{R}^S, called the secondary fan of S.

(d) Let $S = \{(0, 0), (0, 1), (1, 0), (1, 2), (2, 1)\}$. Draw the restriction of Σ_S to the subspace
$$\{f \in \mathbb{R}^S \mid f(0, 0) = f(0, 1) = f(1, 0) = 0\},$$
and identify the subdivision Δ corresponding to each cone in Σ_S.