1. (a) Let \(n \geq 2 \) be an integer. Given \(2n - 2 \) generic \((n - 2)\)-dimensional subspaces of \(\mathbb{P}^n \), how many lines intersect all of them?

(b) Show that, as a projective variety under the Plücker embedding, the degree of \(G(k, n) \) is the number of \textit{standard Young tableau} of shape \(k \times (n - k) \), that is, the number of ways to place \(1, 2, \ldots, k(n - k) \) in a \(k \times (n - k) \) rectangle such that each row and column is increasing.

2. *Let \(\geq \) denote dominance order on partitions of \(n \).

(a) *Let \(\lambda, \mu \vdash n \). Show that \(\lambda \geq \mu \) if and only if \(\mu' \geq \lambda' \).
(Here, \(\lambda' \) is the conjugate partition of \(\lambda \).)

(b) *Describe the covering relations in dominance order.

(c) *Let \(\lambda \) and \(\mu \) be partitions of \(n \) with (at most) \(k \) parts. Show that \(\lambda \geq \mu \) if and only if \(\mu \in \mathbb{R}^k \) lies in the convex hull of the points (in \(\mathbb{R}^k \)) whose coordinates are permutations of \(\lambda \).

3. The \textit{power sum symmetric functions} \(p_\lambda \) are defined by \(p_\lambda = p_{\lambda_1}p_{\lambda_2} \cdots \), where \(p_n = \sum_i x_i^n \). Show that \(\{p_\lambda \mid \lambda \vdash n\} \) is a basis for \(\Lambda^n_{\mathbb{Q}} \).

Do the \(p_\lambda \) form a \(\mathbb{Z} \)-basis of \(\Lambda^n_{\mathbb{Z}} \)?

4. Given a basis \(\{b_\lambda\} \) of \(\Lambda \), we say a symmetric function \(f \) is \(b \)-positive if the coefficients of \(f \) when expanded in the basis \(\{b_\lambda\} \) are nonnegative.

Describe all symmetric functions that are both \(e \)-positive and \(h \)-positive.